

Document reference: ATC-ML-IT-RP-93-1.0_IT_590

ICOS ATC Metrology Laboratory Evaluation report for the ICOS instrument 590

Tests by C. Philippon Approved by O. Laurent Date: 2017-09-18

Document history

Version	Date	Actions
1.0	2017-09-18	Creation

Diffusion

 $\Box \text{ ATC internal} \\ \boxtimes \text{ ICOS community}$

 \Box Public

Repository

 \boxtimes Alfresco in Library/Documents/Common/ICOS-RI/ATC/MetrologyLab/Reports \boxtimes ICOS ATC website: https://icos-atc.lsce.ipsl.fr/docs

Disclaimer

The contents of this document (including any attachments) may be privileged, confidential or copyrighted under applicable law and are intended solely for use by the intended recipient. The status is discussed only using the indicated version of the ICOS atmospheric station specifications.

Contents

1	Instrument references	4
2	Outlet valve characterization	4
3	Continuous Measurement Repeatability (CMR) assessment	5
4	Short term stability and drift assessment	7
5	Short Term Repeatability (STR) assessment	9
6	Long Term Repeatability (LTR) assessment	11
7	Atmospheric pressure sensitivity	13
8	Inlet pressure sensitivity	15
9	Temperature sensitivity	17
	Water vapor correction assessment 10.1 Factory correction 10.1 Factory correction 10.2 Determination of H ₂ O correction coefficients by the MLab 10.3 MLab correction 10.2 Determination	 19 19 21 23 24
	2 Linearity	27
	3 Laboratory inter-comparison 13.1 Without drying system 13.1.1 Factory water vapor correction 13.1.2 Water vapor correction coefficients determined by ATC 13.2 With drying system	28 28 28 30 32
14	Summary	34
15	Screenshots	36
С	ertificate of Compliance	

1 Instrument references

Owner	Reception Date	Departure date		
CNR-ISAC	2017-08-09	2017-09-11		

ICOS ID Brand		Model S/N		Software release version	
590	PICARRO	G2401	2871-CFKADS-2269	G2000-1.6.0.14	

ID	Associated documents	Reference	Date
AD1	Procedure of initial tests	ATC-ML-IT-PR-02-2.0	2016-10-14
AD2	ICOS atmospheric station specifica-	ATC-GN-GN-SP-1.2	2016-08
	tions		
AD2	Incoming control sheet	ATC-ML-IT-IC-52	2017-08-09
AD3	Follow-up sheet	ATC-ML-IT-FS-77	2017-08-09

In the following pages, we present the results of the tests performed at the ATC MLab. For more details about these tests, please refer to the procedure of initial tests [AD1]. For each test, we either show the results not corrected for the water vapor (w, e.g. CO_2w) or corrected for the water vapor using the factory correction or the ATC correction (d, e.g. CO_2d). Except for the temperature test, the laboratory temperature is regulated at $22^{\circ}C \pm 2$.

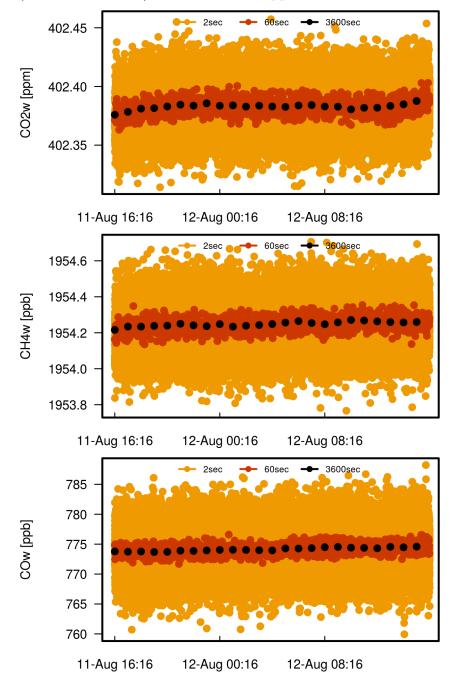
2 Outlet valve characterization

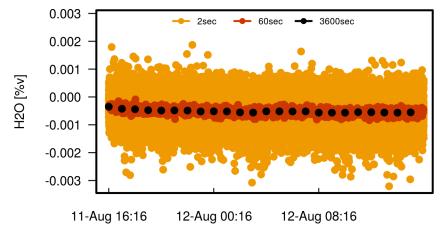
Methodology: Three tests are performed. The first test consists in determining the effective opening value of the outlet proportional valve (without unit, from 0:closed to 65000 fully open).

In the second test, the cavity is first evacuated and then closed for 5 minutes and the pressure is monitored to evaluate the leakage rate.

Finally, the nominal value of the outlet valve (when nothing is connected to the instrument inlet) is measured.

After performing these tests, the results are the following:

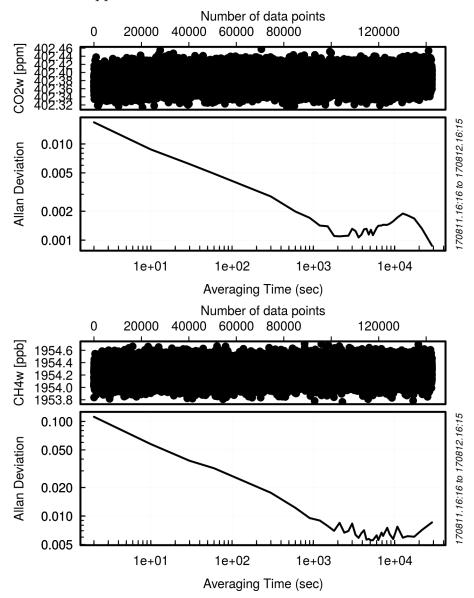

The outlet valve first opens at 18000.

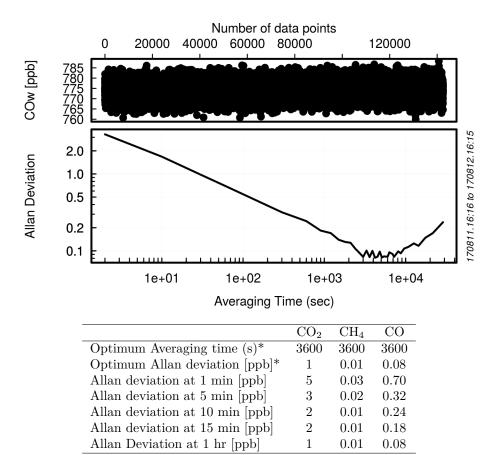

The leakage rate is 0.040 Torr in 1 minute. The median is around 0.056 Torr for the instruments tested up to now at the MLab.

Its nominal outlet value value is 34000. Above this value, the instrument inlet is in overpressure. Under it, it is in underpressure.

3 Continuous Measurement Repeatability (CMR) assessment

Methodology: Measure continuously a tank filled with dry natural air during at least 25 hours. Look at data distribution for different integration times. First hour not taken into account (stabilization time). No calibration applied.

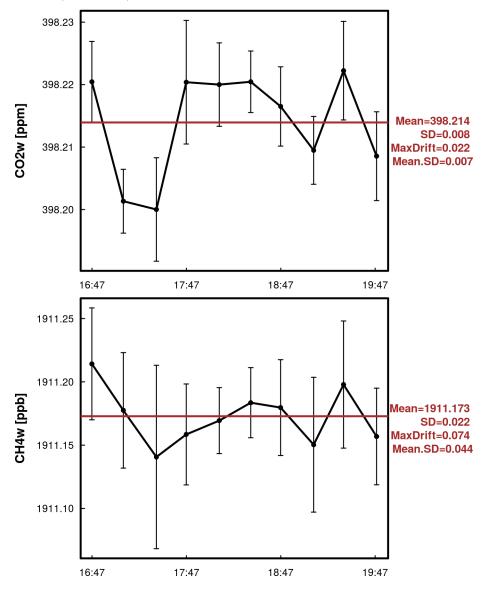

170811	16:16

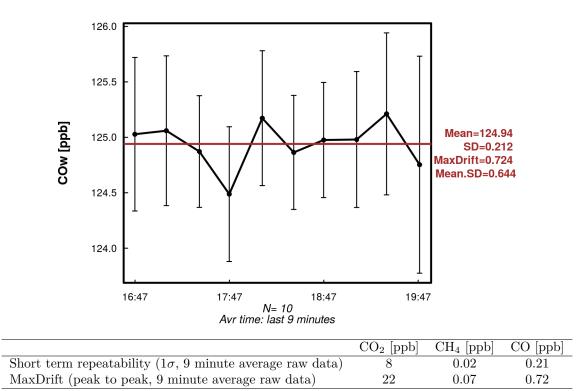

170812 16:15

	$\rm CO_2 \ [ppb]$	$CH_4 [ppb]$	CO [ppb]	H2O [%v]
Average of the standard deviations of raw data over a minute	17	0.11	3.27	0.0004
Minute averaged data CMR Precision (1σ)	6	0.04	0.76	0.0001
Hourly averaged data CMR Precision (1σ)	2	0.01	0.30	0.0001
Minute averaged data CMR MaxDrift (peak to peak)	40	0.22	4.90	0.0008
Hourly averaged data CMR MaxDrift (peak to peak)	12	0.06	0.90	0.0002

4 Short term stability and drift assessment

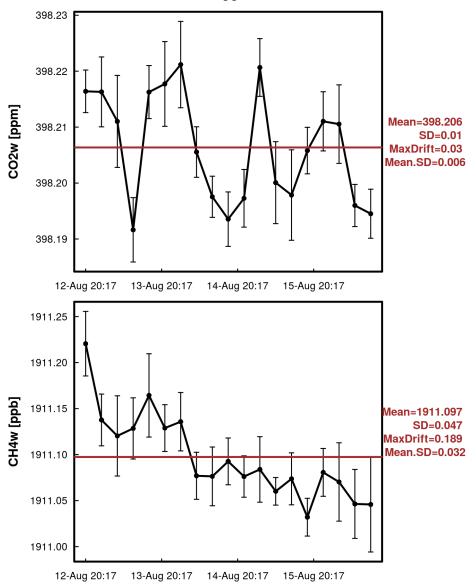
Methodology: Measure continuously a tank filled with dry natural air during at least 25 hours. Calculate Allan deviations. First hour not taken into account (stabilization time). No calibration applied.

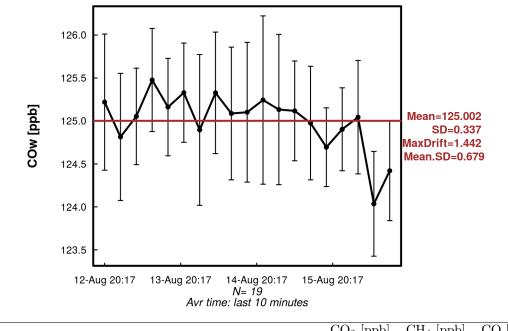




* The optimum is searched in the first one hour window.

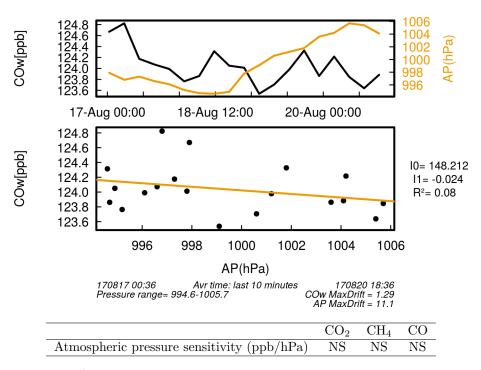
5 Short Term Repeatability (STR) assessment


Methodology: Measure a tank filled with dry natural air for 15 min and wet ambient air for 5 minutes alternatively 10 times. For each period of tank measurement, calculate a mean value (discard the first minutes for stabilization). Look at the dispersion (1σ) of the mean values (10 points). No calibration applied.



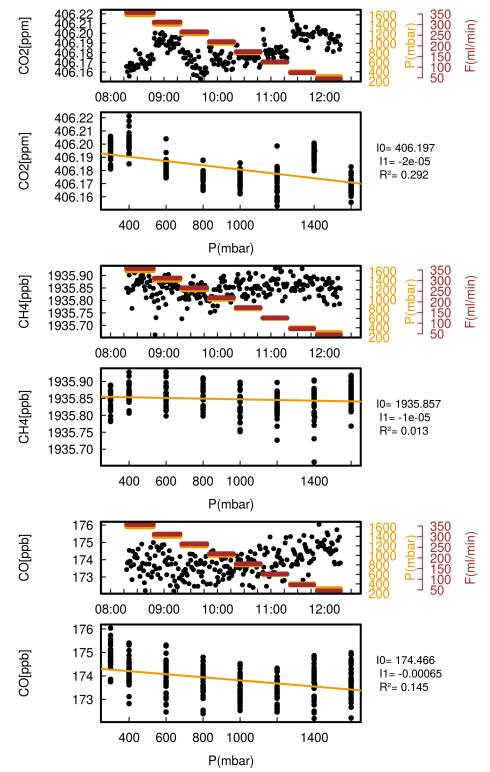
6 Long Term Repeatability (LTR) assessment

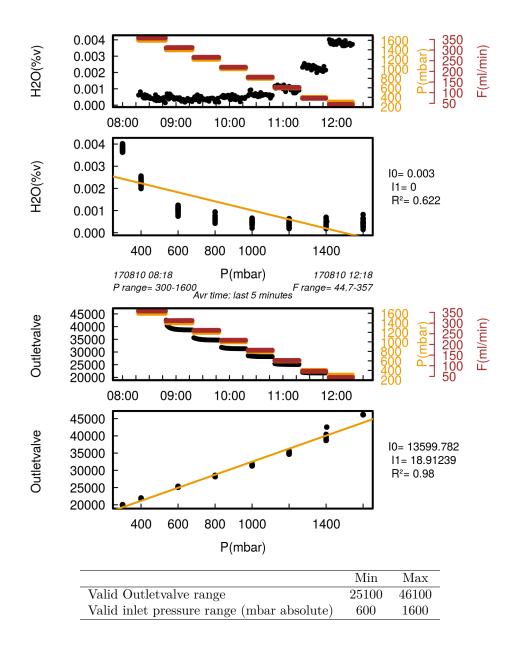
Methodology: Measure alternatively over 72 hours a tank filled with dry natural air for 30 minutes and 270 minutes of wet ambient air. For each period of tank measurement, calculate a mean value (discard the first minutes for stabilization). Look at the dispersion (1σ) of the mean values. No calibration applied.


	$\rm CO_2 \ [ppb]$	$CH_4 [ppb]$	CO [ppb]
Long term repeatability $(1\sigma, 10 \text{ minute average raw data})$	10	0.05	0.34
MaxDrift (peak to peak, 10 minute average raw data)	30	0.19	1.44

7 Atmospheric pressure sensitivity

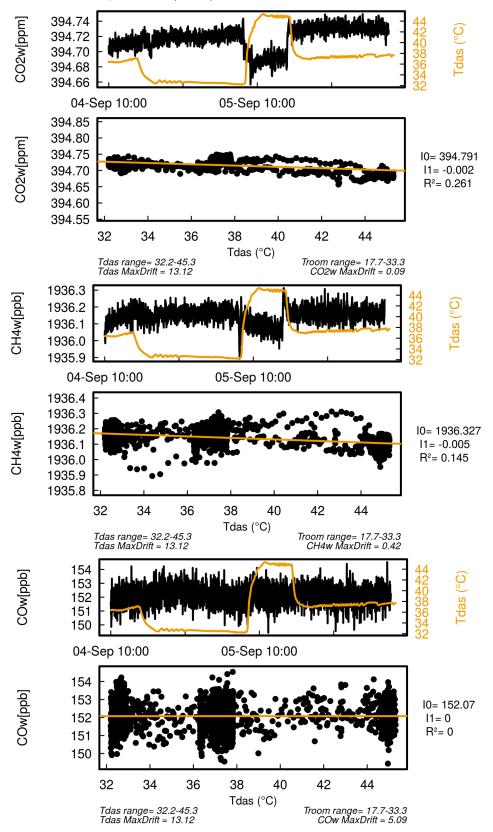
Methodology: Measure alternatively over 72 hours a tank filled with dry natural air for 30 minutes and 270 minutes of wet ambient air. For each period of tank measurement, calculate a mean value (last 10 minutes) and look at the correlation of the tank measurement with atmospheric pressure (AP) variation.

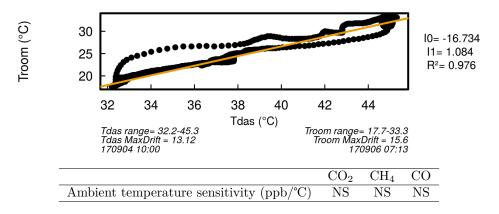

CH4w MaxDrift = 0.14 AP MaxDrift = 11.1



Not significant (NS) if R² <0.5 or the absolute value of the slope lower than 1, 0.02 and 0.03 ppb/hPa for CO₂, CH₄ and CO respectively

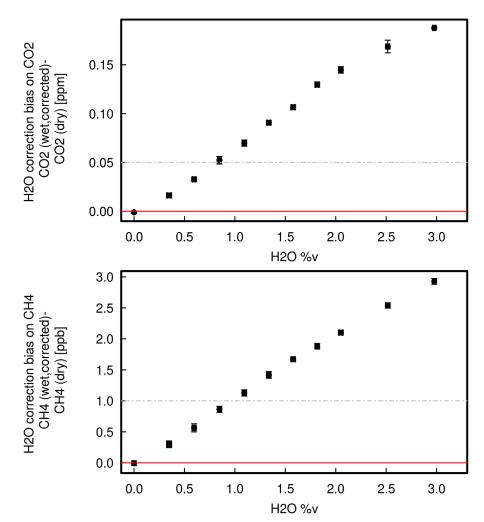
8 Inlet pressure sensitivity


Methodology: Measure continuously a tank filled with dry natural air through an electronic pressure controller at the instrument inlet. Change sequentially (step of 30 minutes) the instrument inlet pressure (maximum range from 1600 mbar absolute to 300 mbar absolute) thanks to the pressure controller. The valid range is evaluated as the range where CO_2 mixing ratios are ± 0.02 ppm from the mixing ratio at atmospheric pressure.

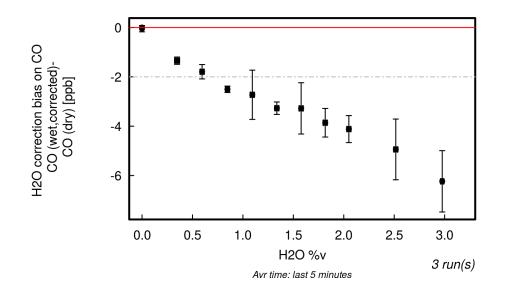


9 Temperature sensitivity

Methodology: Measure a tank filled with dry natural air while changing the room temperature (Troom). Look at the correlation of the measurement stability with the instrument internal temperature (Tdas).



Not significant (NS) if R²<0.45 or the absolute value of the slope lower than 5, 0.1 and 0.2 ppb/°C for CO₂, CH₄ and CO respectively


10 Water vapor correction assessment

Methodology: Measure a tank filled with dry natural air during at least 1h. Then humidify by 20 minute steps the tank gas at 0.25/0.5/0.75/1/1.25/1.5/1.75/2/2.5/3 %v of water vapor. Finally, stop humidifying and measure the tank filled with dry natural air during more than 1 hour. Repeat the experiment at least twice, usually three times. Check the water vapor correction bias depending on the H₂O level. Determine an optimized water vapor correction bias.

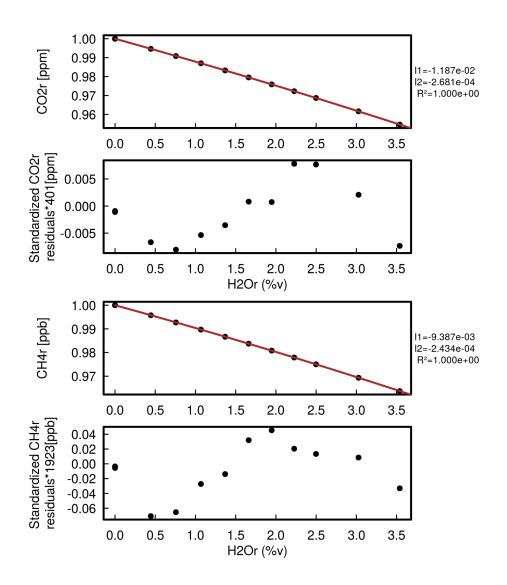
 $H_2O\ correction\ bias = C_{humidi\ fied\ gas,\ water\ vapor\ corrected} - C_{not\ humidi\ fied\ gas} \tag{1}$

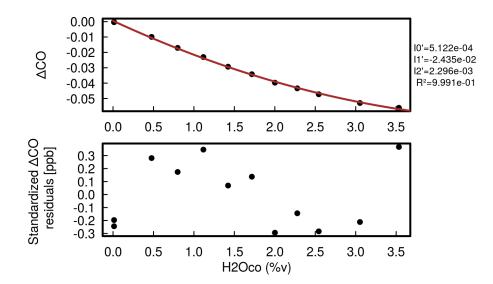
10.1 Factory correction

10.2 Determination of H_2O correction coefficients by the MLab

$$C_r = \frac{C_{wet}}{C_{dry}} = 1 + I_1 * H_2 O_r + I_2 * H_2 O_r^2$$
⁽²⁾

with H_2O_r : Instrument reported value (not calibrated). The "calibrated" H_2O value is:


$$H_2O = 0.772 * H_2O_r + 0.019493 * H_2O_r^2 \tag{3}$$


For CO, we define CO_{wet} as the sum of two terms:

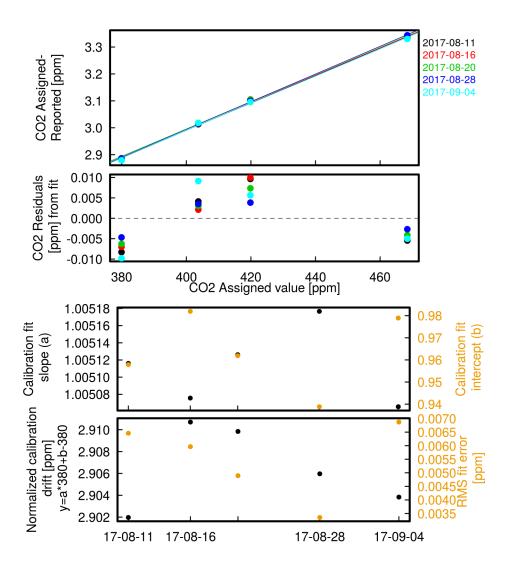
$$CO_{wet,not\,calibrated} = CO_{wet\,no\,H2O\,line\,inter\,ference\,corr} + \Delta CO \tag{4}$$

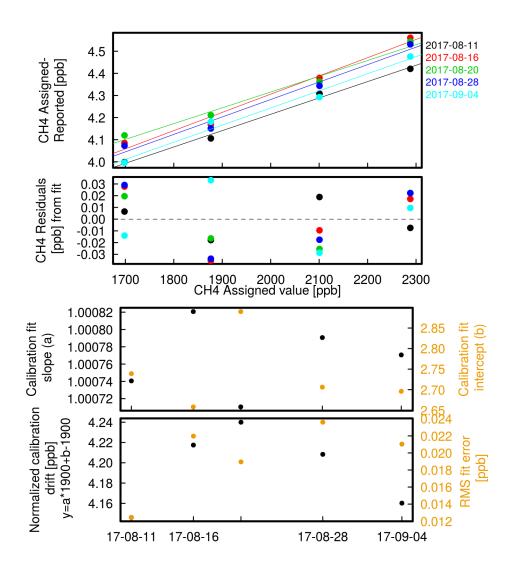
The first term is calculated using the CO, CO_2 and H_2O peaks that are interfering with each other but does not take into account the line interference of the H_2O peak on the CO peak which is represented by ΔCO . We estimate the H_2O correction by plotting the second term versus the H_2O using the H_2O peak close to the CO line (H_2O_{co}) .

$$\Delta CO = I0' + I_1' * H_2 O_{co} + I_2' * H_2 O_{co}^2 \tag{5}$$

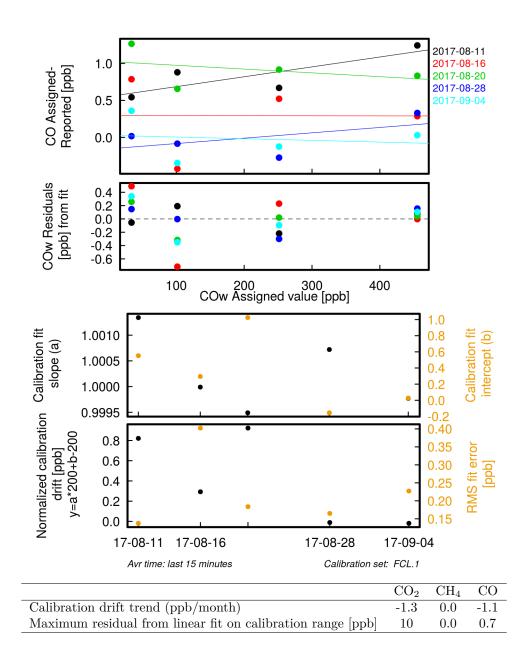
 H_2O correction coefficients determined by ATC

	$\rm CO_2$	CH_4
I1	-1.187e-02	-9.387e-03
I2	-2.681e-04	-2.434e-04

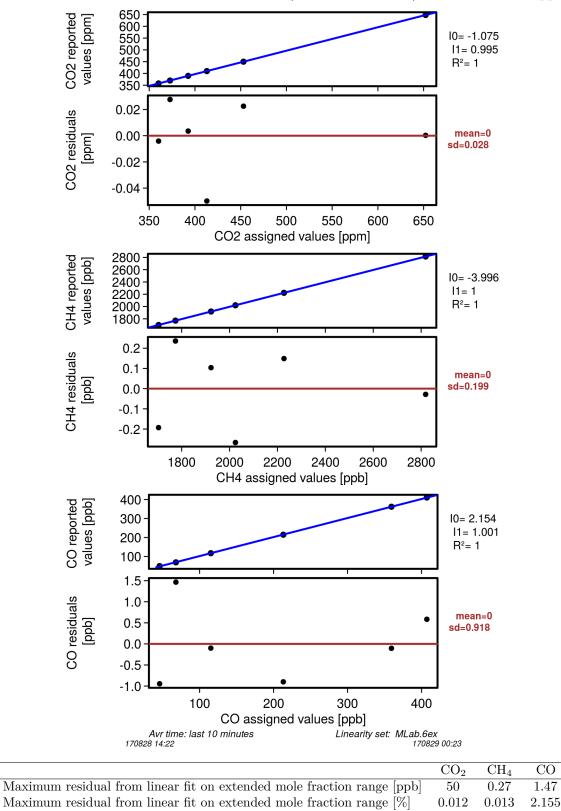

	СО
I1'	-2.435e-02
I2'	2.296e-03



11 Calibration


Methodology: Measure 4 times (during 20 minutes each time) 4 standards filled with known CO₂, CH₄ and CO concentrations. Compare reported values from the instrument and assigned values. Determine calibration functions. The residuals shown are the residuals from the calibration fit ($C_{Assigned}$ - $C_{Reported}$ =f($C_{Assigned}$)). Check the instrument drift. The value in the table is evaluated by calculating the temporal regression of the average differences (Assigned-Reported) for each calibration episode.

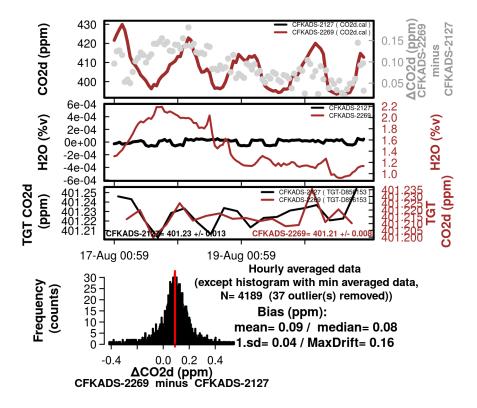
CO2

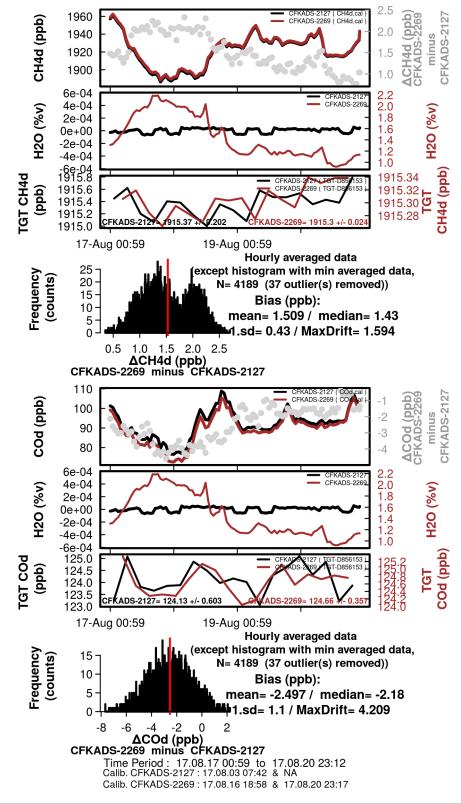


CH4

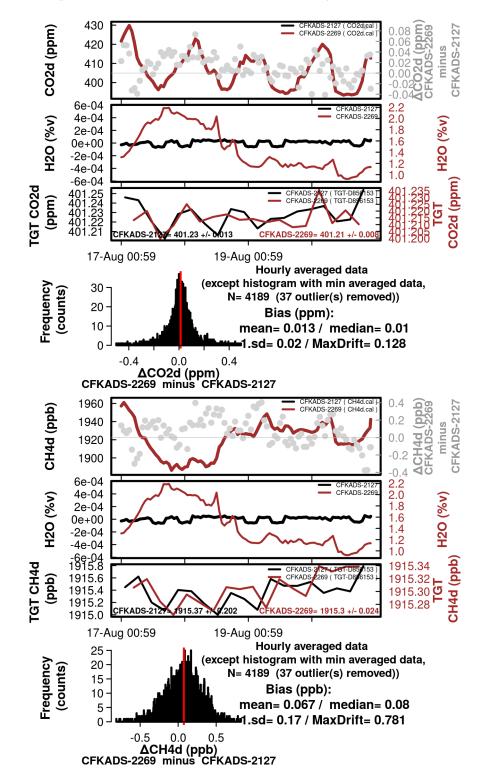
12 Linearity

Methodology: Measure 4 times (during 20 minutes each time) 6 standards filled with known CO_2 , CH_4 and CO concentrations within the range guaranteed by the manufacturer. The first minutes are not taken into account (stabilization time). No calibration applied.

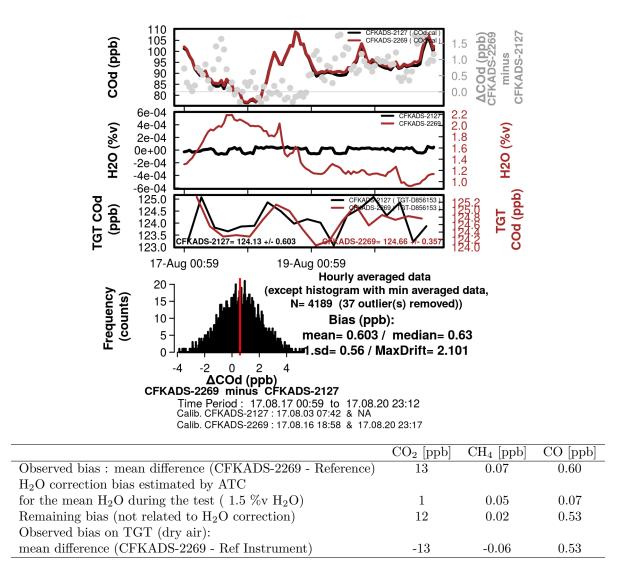



13 Laboratory inter-comparison

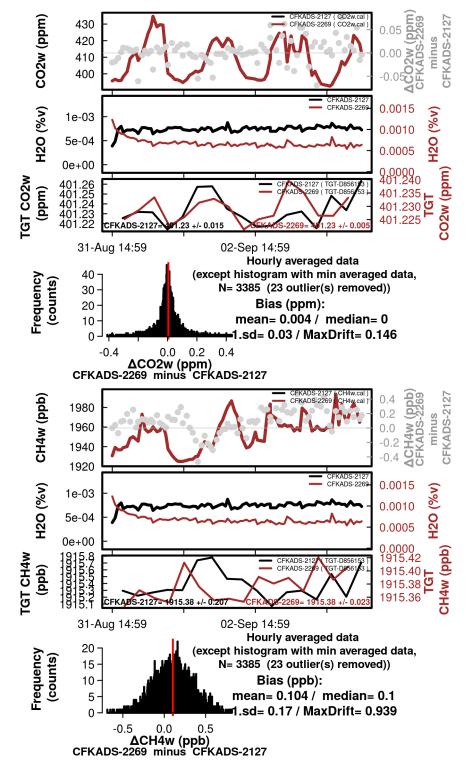
13.1 Without drying system

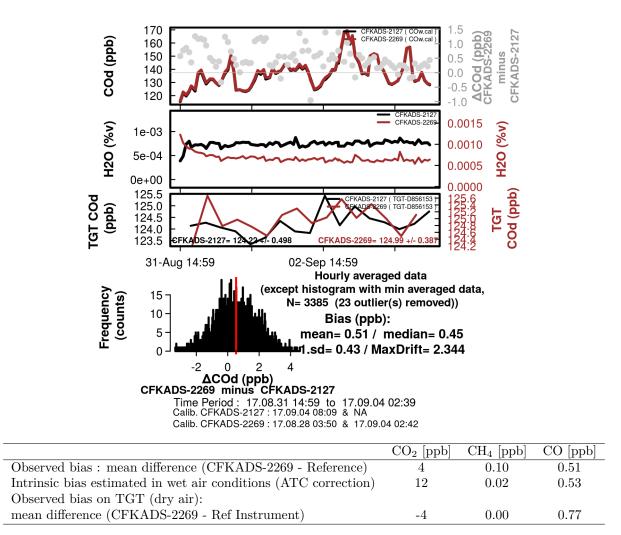

Methodology: Measure ambient air without drying system. Compare with a reference instrument with drying system. The 2 instruments are calibrated against the same set of calibration tanks. They are each equipped with a dedicated sampling line. If the MLab reference instrument is unavailable then the reference instrument is the instrument tested in parallel. In this case, they use the same sampling line and the ATC water vapor correction is applied to the reference. A target gas is measured on both instruments for quality control.

13.1.1 Factory water vapor correction



	$\rm CO_2 \ [ppb]$	$CH_4 [ppb]$	CO [ppb]
Observed bias in ambient air:			
mean difference (CFKADS-2269 - Ref Instrument)	90	1.51	-2.50
H_2O correction bias estimated by ATC			
for the mean H_2O during the test ($1.5 \% v H_2O$)	107	1.67	-3.28
Remaining bias (not related to H_2O correction)	-17	-0.16	0.78
Observed bias on TGT (dry air):			
mean difference (CFKADS-2269 - Ref Instrument)	-13	-0.06	0.53

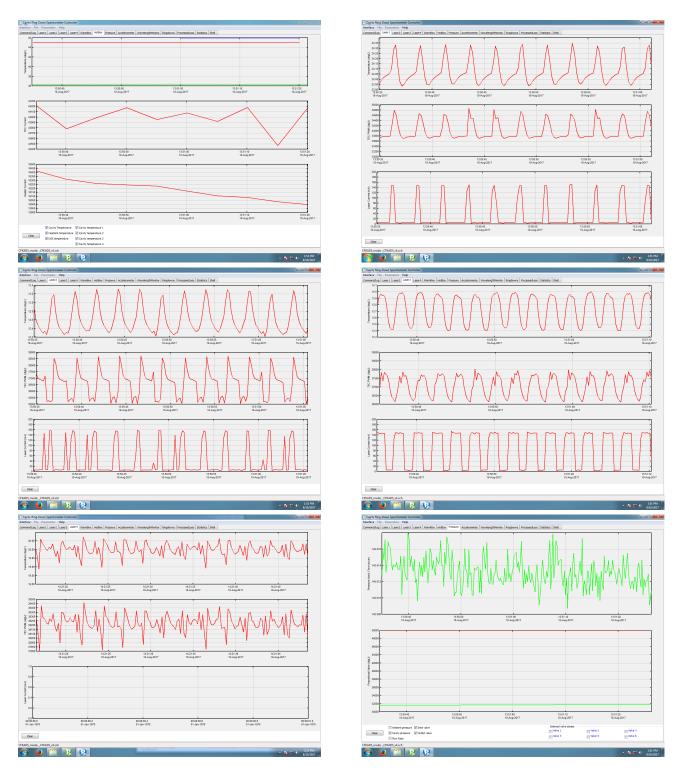


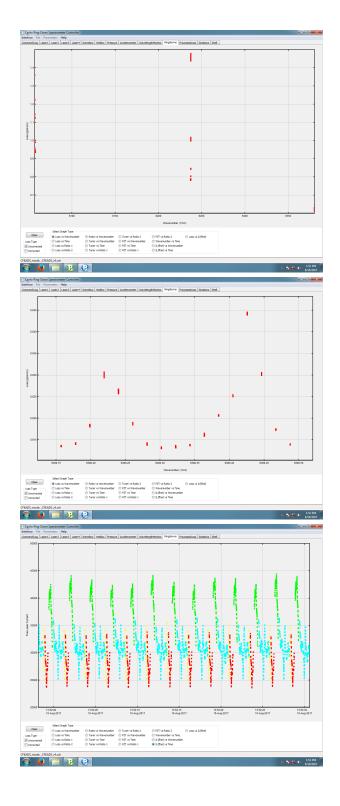

13.1.2 Water vapor correction coefficients determined by ATC

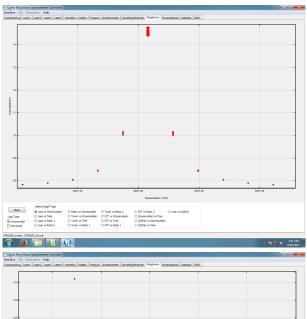
13.2 With drying system

Methodology: Measure ambient air with drying system. Compare with a reference instrument. The 2 instruments are calibrated against the same set of calibration tanks. They are equipped with a dedicated sampling line. If the MLab reference instrument is unavailable then the reference instrument is the instrument tested in parallel. In this case, they use the same sampling line. A target gas is measured on both instruments for quality control.

14 Summary

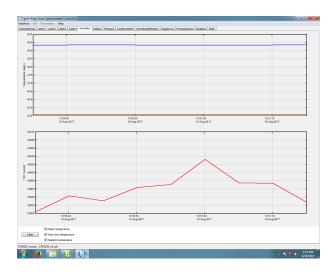

For legibility purposes, the results are split into tables by species. Only status in bold are taken into account for the final status.


	CO_2			
	Spec	ATC	Unit	Status
Field CMR (average on min sd)	-	17	ppb	-
Minute CMR (1σ)	$<\!50$	6	ppb	Pass
Hourly CMR (1σ)	$<\!\!25$	2	ppb	Pass
Minute CMR MaxDrift (peak to peak)	<200	40	ppb	Pass
Hourly CMR MaxDrift (peak to peak)	$<\!150$	12	ppb	Pass
LTR $(1\sigma, 10 \text{ min avr raw data})$	$<\!50$	10	ppb	Pass
LTR MaxDrift (peak to peak)	<200	30	ppb	Pass
STR $(1\sigma, 9 \text{ min avr raw data})$	-	8	ppb	-
Atm. pressure sensitivity	-	NS	ppb/hPa	-
Temperature sensitivity	-	NS	ppb/°C	-
Max res from fit in cal range	-	10	ppb	-
Max res from fit in extended range	-	50	ppb	-
Max res from fit in extended range 2	-	0.012	%	-
Calibration drift trend	-	-1.3	ppb/month	-
Water vapor corr: max bias ATC	-	0.01	ppb	-
Water vapor corr: max bias Factory	-	0.19	ppb	-
Water vapor correction I1	-	-1.187e-02	_	-
Water vapor correction I2	-	-2.681e-04	-	-


		(CH_4	
	Spec	ATC	Unit	Status
Field CMR (average on min sd)	-	0.11	ppb	-
Minute CMR (1σ)	<1	0.04	ppb	Pass
Hourly CMR (1σ)	< 0.5	0.01	ppb	Pass
Minute CMR MaxDrift (peak to peak)	$<\!\!2$	0.22	ppb	Pass
Hourly CMR MaxDrift (peak to peak)	$<\!\!1.5$	0.06	ppb	Pass
LTR $(1\sigma, 10 \text{ min avr raw data})$	< 0.5	0.05	ppb	Pass
LTR MaxDrift (peak to peak)	$<\!\!2$	0.19	ppb	Pass
STR $(1\sigma, 9 \text{ min avr raw data})$	-	0.02	ppb	-
Atm. pressure sensitivity	-	NS	ppb/hPa	-
Temperature sensitivity	-	NS	ppb/°C	-
Max res from fit in cal range	-	0.0	ppb	-
Max res from fit in extended range	-	0.27	ppb	-
Max res from fit in extended range 2	-	0.013	%	-
Calibration drift trend	-	0.0	ppb/month	-
Water vapor corr: max bias ATC	-	0.03	ppb	-
Water vapor corr: max bias Factory	-	2.93	ppb	-
Water vapor correction I1	-	-9.387e-03	-	-
Water vapor correction I2	-	-2.434e-04	-	-

			CO	
	Spec	ATC	Unit	Status
Field CMR (average on min sd)	-	3.27	ppb	-
Minute CMR (1σ)	<2	0.76	ppb	Pass
Hourly CMR (1σ)	<1	0.30	ppb	Pass
Minute CMR MaxDrift (peak to peak)	<15	4.90	ppb	Pass
Hourly CMR MaxDrift (peak to peak)	<2	0.90	ppb	Pass
LTR $(1\sigma, 10 \text{ min avr raw data})$	<1	0.34	ppb	Pass
LTR MaxDrift (peak to peak)	<3	1.44	ppb	Pass
STR $(1\sigma, 9 \text{ min avr raw data})$	-	0.21	ppb	-
Atm. pressure sensitivity	-	\mathbf{NS}	ppb/hPa	-
Temperature sensitivity	-	\mathbf{NS}	ppb/°C	-
Max res from fit in cal range	-	0.7	ppb	-
Max res from fit in extended range	-	1.47	ppb	-
Max res from fit in extended range 2	-	2.155	- %	-
Calibration drift trend	-	-1.1	ppb/month	-
Water vapor corr: max bias ATC	-	0.62	ppb	-
Water vapor corr: max bias Factory	-	6.23	ppb	-
Water vapor correction I1	-	-2.435e-02	-	-
Water vapor correction I2	-	2.296e-03	-	-

15 Screenshots





1.25									-
1.20		· ·							-
(us) 1.15		1.1							-
1.10									
1.05									
1.00							•	•	1
0.95		•						1999	
	6057.0	6	167.2	6057.4 Wavenumber		6057.6	6057	1.8	6058.0
Clear Loss Type V Uncorrected Corrected	Select Graph Type © Loss vs Wavenumber © Loss vs Time © Loss vs Ratio 1 © Loss vs Ratio 2	Rato vs Wavenunber Tuner vs Wavenunber Tuner vs Time Tuner vs Ratio 1	© Tuner vs Ratio 2 © PZT vs Wavenumber © PZT vs Time © PZT vs Ratio 1	PZT vs Rate 2 Wavenumber vs Time L(fine) vs Time L(fine) vs Time	C Loss vs IL(fine)				
CFKADS_mode_CFK		9						- 18 19 0	1:52 PM 8/10/2017

Picarro CRDS (S/N: 2871-CFKADS2269)	
SOFTWARE RELEASE VERSION : g2000-1.6.0.14 (473f0d9b)	
Web site : www.picarro.com Technical support : 408-962-3900 E-mail : techsupport@picarro.com	
(c) 2005-2017, Picarro Inc.	
Version strings: config - app version no : 1.0.1 config - common version no : 1.0.9 config - inst version no : 1.0.0 interface : 1	
ОК	

Certificate of Compliance

Certificate n°: ATC-ML-IT-CoC-93-1.0_IT_590 Issued to the instrument 590 (PICARRO 2871-CFKADS-2269)

Tested by: C. Philippon from 2017-08-09 to 2017-09-11

Tests		CO_2			CH_4		СО			Test definition
	ICOS Spec	ATC test results	Status	ICOS Spec	ATC test results	Status	ICOS Spec	ATC test results	Status	
$\begin{array}{c} \text{Minute CMR} \\ (1\sigma, [\text{ppb}]) \end{array}$	<50	6	Pass	<1	0.04	Pass	<2	0.76	Pass	Measure continuously a tank filled with dry natural air during at least 25 hours. Look at data dispersion (1σ) for minute average. First hour not taken into ac- count (stabilization time). No calibra- tion applied.
Hourly CMR $(1\sigma, [ppb])$	<25	2	Pass	<0.5	0.01	Pass	<1	0.30	Pass	Measure continuously a tank filled with dry natural air during at least 25 hours. Look at data dispersion (1σ) for hourly average. First hour not taken into ac- count (stabilization time). No calibra- tion applied.
LTR $(1\sigma, 10)$ min avr raw data, [ppb])	<50	10	Pass	<0.5	0.05	Pass	<1	0.34	Pass	Measure alternatively over 72 hours a tank filled with dry natural air for 30 minutes and 270 minutes of ambient air (not dry). For each period of tank measurement, calculate a mean value (last 10 minutes). Look at the dispersion (1 σ) of the mean values. No calibration applied.

ICOS status: COMPLIANT with the ICOS specifications

James

Olivier Laurent Metrology laboratory manager ICOS ATC France

ICOS Atmosphere Thematic Centre

Date issued: 2017-09-18